Photonic crystal microcavities for chip-based cavity QED
نویسندگان
چکیده
The suitability of recently demonstrated high quality factor (Q), ultra-small mode volume (Veff) graded square lattice photonic crystal microcavities for cavity QED experiments is discussed. In addition to the basic importance of the Q and Veff of such cavities, other issues of both practical and fundamental relevance are considered. Included amongst these are the robustness of the cavity’s performance to fabrication errors and the ability to efficiently source and collect light from the cavity through conventional fiber optics.
منابع مشابه
Semiconductor Optical Microcavities for Chip-Based Cavity QED
Optical microcavities can be characterized by two key quantities: an effective mode volume Veff, which describes the per photon electric field strength within the cavity, and a quality factor Q, which describes the photon lifetime within the cavity. Cavities with a small Veff and a high Q offer the promise for applications in nonlinear optics, sensing, and cavity quantum electrodynamics (cavity...
متن کاملCavity QED with quantum dots in semiconductor microcavities
Cavity quantum electrodynamic (QED) effects are studied in semiconductor microcavities embedded with InGaAs quantum dots. Evidence of weak coupling in the form of lifetime enhancement (the Purcell effect) and inhibition is found in both oxide-apertured micropillars and photonic crystals. In addition, high-efficiency, low-threshold lasing is observed in the photonic crystal cavities where only 2...
متن کاملDesign of photonic crystal microcavities for cavity QED.
We discuss the optimization of optical microcavity designs based on two-dimensional photonic crystals for the purpose of strong coupling between the cavity field and a single neutral atom trapped within a hole. We present numerical predictions for the quality factors and mode volumes of localized defect modes as a function of geometric parameters, and discuss some experimental challenges relate...
متن کاملDesign of high-Q Cavities in Photosensitive Material-based Photonic Crystal Slab Heterostructures
We propose a novel concept for creating high-Q cavities in photonic crystal slabs (PCS). We show that photonic crystal slab-based double heterostructure cavities, formed by variations in the refractive index, can have large a Q-factor (up to Q = 1× 10), and that such cavities can be implemented in chalcogenide glasses using their photosensitive properties. DOI: 10.2529/PIERS060907042030 In the ...
متن کاملMethods to array photonic crystal microcavities for high throughput high sensitivity biosensing on a silicon-chip based platform.
We experimentally demonstrate a method to create large-scale chip-integrated photonic crystal sensor microarrays by combining the optical power splitting characteristics of multi-mode interference (MMI) power splitters and transmission drop resonance characteristics of multiple photonic crystal microcavities arrayed along the length of the same photonic crystal waveguide. L13 photonic crystal m...
متن کامل